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Abstract

This work showcases our team’s (The BEEGees) con-
tributions to the 2023 George B. Moody PhysioNet Chal-
lenge. The aim was to predict neurological recovery from
coma following cardiac arrest using clinical data and
time-series such as multi-channel EEG and ECG signals.
Our modelling approach is multimodal, based on two-
dimensional spectrogram representations derived from nu-
merous EEG channels, alongside the integration of clinical
data and features extracted directly from EEG recordings.
Our submitted model achieved a Challenge score of 0.53
on the hidden test set for predictions made 72 hours af-
ter return of spontaneous circulation and was ranked 14th.
Our study shows the efficacy and limitations of employing
transfer learning in medical classification. With regard to
prospective implementation, our analysis reveals that the
performance of the model is strongly linked to the selec-
tion of a decision threshold and exhibits strong variability
across data splits.

1. Introduction

There are more than six million cardiac arrests annually,
with general survival rates varying between 1% and 10%
due to geographical disparities [1]. Following successful
resuscitation, a significant proportion of survivors are ad-
mitted to intensive care units (ICUs) in a comatose state,
with severe brain injury emerging as the leading cause of
death among this group. In the crucial days following car-
diac arrest, medical professionals are often tasked with es-
timating the likelihood of the patient regaining conscious-
ness. A positive prognosis often leads to ongoing medical
care, while a negative prognosis can result in the discontin-
uation of life support and hence death. There have been re-
ported instances of patients recovering well despite a grim
prognosis, raising concerns that negative predictions may
inadvertently influence the outcome [2].

This year’s Challenge [1, 3] asked to develop an open-
source algorithm capable of predicting the extent of recov-

ery from coma after a cardiac arrest. These predictions
were to be made using a combination of basic clinical data,
EEG, ECG and other signals, with the aim of classifying
outcomes into either ’Poor’ or ’Good’. In this work we
develop a multimodal deep learning approach. Our strat-
egy involves generating two-dimensional spectrogram rep-
resentations sourced from multi-channel EEG signals and
their integration with clinical data, along with features di-
rectly extracted from the EEG recordings.

2. Methodology

2.1. Data

The dataset for this study is taken from the International
Cardiac Arrest REsearch (I-CARE) consortium and orig-
inates from seven academic hospitals across the United
States and Europe [4]. It comprises clinical data, in-
cluding age, gender, return time of spontaneous circula-
tion (ROSC), arrest location (out-of-hospital cardiac arrest
OHCA), presence of shockable rhythm, use of targeted
temperature management (TTM), and clinical time-series
data, such as continuous electroencephalography (EEG),
electrocardiogram (ECG) and partially other recordings
(e.g. SpO2). The dataset consists of 1,020 patients (from
which 607 were provided for training) who were admit-
ted to an ICU in a comatose state following cardiac arrest.
Neurological outcomes were assessed using the Cerebral
Performance Category (CPC) scale.

We filtered the EEG signals by applying a band-pass fil-
ter over the range 0.5–30 Hz and a notch-filter at 50 and
60 Hz to mitigate artifacts from electrical grids. We em-
ployed artifact detection using a sliding window approach,
only keeping the cleanest section of each recording.

For part of our model (Sec. 2.2) we converted the
EEG signals to spectrograms (Figure 1), using the Python
package librosa, to use them together with other non-
imaging modalities as inputs for the models [5].
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Figure 1. An example of EEG recordings (bottom) for pa-
tient 994 at the 8th hour of channel F8 with good outcome.
The top displays the corresponding spectrogram (squared
amplitude in decibel units relative to peak power).

2.2. Models and architecture

In our approach, outlined in Figure 2, we evaluated
six models for binary prediction of patient outcome at 72
hours after ROSC. Model M1 used clinical features and
EEG summary statistics before employing a Random For-
est classifier. In model M2, we added features extracted
from EEG spectrograms using a DenseNet121-CNN [6]
into the classifier. In model M3, these DenseNet features
were further aggregated over time and channels. Model
M4 introduced an intermediate fusion step for clinical fea-
tures into the last layer of the DenseNet architecture. In
models M5 and M6, we introduce additional output from
a ridge regression classifier. This classifier is trained on
features extracted from the EEG signals using the Ran-
dom Convolutional Kernel Transform (ROCKET) [7]. We
obtain the regularisation strength of the classifier through
leave-one-out cross-validation over 10 log-evenly spaced
values ranging from 10−3 and 103. ROCKET employs
104 kernels, with lengths randomly selected from the set
{7, 9, 11}. Each kernel comprises 4 features and a maxi-
mum of 32 dilations. These settings align with the default
parameters from sktime’s RocketClassifier. Model
M5 omitted the intermediate fusion present in model M4,
whereas model M6 included it.

2.3. Scoring

The Challenge’s official score emphasises the False Pos-
itive Rate (FPR) of incorrectly predicting a poor patient
outcome. The scoring method selects the highest decision
threshold that maintains the FPR below 5%, and subse-
quently evaluates the True Positive Rate (TPR) for predict-
ing poor outcomes. Mathematically the score is defined,
given a threshold θ drawn from the predictions, as

max
θ:FPRθ≤0.05

TPRθ (1)
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Figure 2. A schematic diagram of our model architecture.
Blue: input data; red: filters and aggregation; yellow: pre-
defined features; green: trainable models.

Two types of scores were reported. The ‘Validation Score’
was the assessment provided by the Challenge organis-
ers on the hidden set. The ‘CV Score’ and ‘CV AUC’
were computed as the mean and standard deviation, de-
rived from the local five-fold cross-validation (CV).

3. Results

Table 1 shows the feature availability and their overall
key characteristics for the training data provided by the or-
ganisers of the Challenge collected from 607 patients.

Feature Value Missing
Age [years], mean (SD) 61 (16) 1
Sex [‘Men’], N(%) 417 (69) 0
ROSC [minutes], mean (SD) 23 (19) 304
OHCA [‘True’], N(%) 442 (78) 41
Shockable rhythm [‘True’], N(%) 297 (52) 32
TTM, N at 33/36/na ◦C 448/61/98 0
Outcome [‘Poor’], N(%) 382 (52) 0

Table 1. Summary of clinical data and patient outcome for
the available 607 patients. OHCA is ‘True’ for out of hos-
pital arrests; TTM is the temperature management where
‘na’ stands for no TTM was applied.

Table 2 provides the official scores on the hidden valida-
tion set, along with the mean and standard deviation for the
score and AUC obtained from our local cross-validation,
for the six models proposed in this work. Our final submis-
sion (model M5) achieved a Challenge score of 0.53 on the
hidden test set. Figure 3 shows the relative feature impor-
tance of the classifier of our locally best performing model
M6. The EEG signal information were the most important
features while demographics and other clinical features ex-
hibit lower importance. Figure 4 shows the dependency of
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Model Features Validation Score CV Score CV AUC
M1 Clinical data, EEG summary stats, Signal flags 0.520 0.327 (0.137) 0.688 (0.046)
M2 + DenseNet on spectrograms 0.540 0.484 (0.157) 0.824 (0.023)
M3 + aggregation of features over time and channels 0.567 0.527 (0.090) 0.811 (0.049)
M4 + intermediate fusion 0.328 0.537 (0.104) 0.818 (0.038)
M5 + ROCKET features without intermediate fusion 0.627 0.447 (0.085) 0.836 (0.033)
M6 + ROCKET features with intermediate fusion not provided 0.567 (0.085) 0.854 (0.015)

Table 2. The six models proposed and tested in this work (Sec. 2.2). The Validation Score is the performance on the
Challenge’s hidden validation set. CV Score is the mean (standard deviation) Challenge score from the five-fold cross
validation on the training data (Sec. 2.3). CV AUC is the AUC on the same data. The ‘+’ should be read as ‘in addition’.

error rates on the selection of a particular threshold. Fig-
ure 5 shows the ROC curve of our locally best performing
approach (model M6) for which AUC=0.854.
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Figure 3. Relative feature importance plot for the locally
best performing model M6. Here ‘agg.’ means aggregated
over channels and time using the mean prediction and a
majority voting for the DenseNet features.
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Figure 4. Accuracy (blue), FPR (red dashed) and FNR
(red dashed-dotted) of the ‘Poor’ outcome label for differ-
ent decision thresholds of model M6.

4. Discussion

4.1. Main findings and limitations

In this study, we developed and tested six models for
forecasting post-cardiac arrest coma recovery using a mul-
timodal approach [5, 8]. Model M1 served as our bench-

Figure 5. ROC curve (blue solid) of our final model (AUC
= 0.854) with the indicated (black line) 5% FPR threshold.

mark. Incorporating CNN-extracted features from spectro-
grams in M2 led to the most significant AUC improvement
in local CV. To improve robustness, we aggregated features
from different hours and channels in model M3. This ag-
gregation effectively reduced the number of features used
in the final classifier and improved the score, which was
highly sensitive to minor variations on the left side of the
AUC curve (Figure 5). Although model M4’s intermedi-
ate fusion improved local score, its validation performance
declined, indicating overfitting. Adding features extracted
by ROCKET to the final classifier substantially improved
performance on the validation set (0.627), but had limited
impact on the local CV set. Furthermore, performance de-
teriorated on the hidden test set (0.53), leading us to con-
clude that enhancing the robustness of our methodology re-
mains an open research question. Additionally, given that
ROCKET features did not markedly improve local results,
it is still unclear how much additional information these
features provide compared to those already extracted. Our
results show that although multimodal approaches (M2-
M6) achieved strong performance on the local held-out set
(CV AUC > 0.81), generalisability concerns emerged,
which need further considerations.

4.2. Previous work

The majority of the predictive models developed to date
using EEG signals predominantly employ CNNs, using
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colour channels for diverse signals. Notably, these models
are mostly constructed from datasets consisting of fewer
than 300 patients [9]. Only a handful of studies have fo-
cused on predicting coma outcomes [9–11]. For example,
[10] achieved an AUC of 91% at 66 hours after return of
spontaneous circulation with a sensitivity of 66% for poor
outcome prediction at a specificity of 95%.

4.3. Future research

Several potential avenues for future research are avail-
able. For instance, one can consider refining the modelling
of time dependencies [10] and exploring self-supervised
pre-training to boost network performance. The incorpo-
ration of other time-series data, such as ECG (not fully
exploited in this study due to substantial missing data)
could also lead to valuable insights, particularly when in-
tegrated with EEG signals [12]. This year’s Challenge,
however, demonstrated that the best-performing and most
robust models were those that had undergone substantial
feature engineering and data pre-processing [12]. The win-
ning team, for example, extracted 362 expert-based EEG
features plus additional ECG features [12].

Code availability

Our complete code is available on GitHub at
https://github.com/felixkrones/physionet challenge 2023.
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